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Abstract

The subsurface environment beneath the Municipality of Bologna, Italy is comprised of a

series of alluvial deposits which constitute large and productive aquifer systems. These

are separated from the shallow, free surface aquifer by a low permeability barrier called

aquitard Alpha. The upper aquifer contains water that shows relevant contamination from

industrial pollutants. The deep aquifers are relatively pristine and provide about 80% of all

groundwater used for drinking and industrial purposes in the area of Bologna. Hence, it is

imperative that planners understand where along aquitard Alpha there exists potential di-

rect connection between the upper and the deep aquifers, which could lead to contamination

of the city’s key water supply well fields.

In order to better understand the existence of preferential flow paths between these aquifer

systems, we carry out a statistical analysis in which the aquitard is represented as a bivariate

spatial process which simultaneously models its thickness as well as its sedimentological

properties. The sedimentological component of the process provides a spatial map of the

probability of coarse material regions within aquitard Alpha, which can induce direct vertical

connection between the aquifers. This map is then cross referenced with other forms of data

regarding the hydrology of the region.
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1 Introduction

The key geological units beneath the Municipality of Bologna, Italy host large and productive

aquifers, which are separated vertically from the upper, free surface aquifer by a low permeability

barrier called aquitard Alpha (Figure 1). The upper aquifer contains water that shows evidence

of contamination by industrial pollutants. The lower aquifers are relatively pristine and provide

about 80% of all groundwater used for drinking and industrial purposes in the area of Bologna.

Relatively fast migration of contaminants between the upper and deep aquifers is possible

through highly permeable inclusions (e.g., fractures, cracks, lenses of coarse material, etc.) embed-

ded in aquitard Alpha. The ability to ascertain the locations and spatial extent of such inclusions

which constitute preferential flow paths for contaminants is paramount for ensuring the safe and

environmentally sound exploitation of groundwater resources in the region.

To identify highly permeable inclusions in the otherwise impermeable aquitard Alpha, we carry

out a statistical analysis in which the aquitard and its hydrogeological attributes are treated as spa-

tially correlated random fields. These fields are estimated using sedimentological and stratigraphic

data. This analysis allows for the construction of a spatial map of the probability of regions con-

sisting of coarse materials dominated by high hydraulic conductivities within the aquitard Alpha.

This map is then cross referenced with other types of hydrogeologic information.

1.1 Description of the site and motivation of the study

The city of Bologna lies on the alluvial plain of the Reno river, in the Emilia Romagna region

of Northern Italy. This study focuses on a nearby area (Figure 1a) of about 50km2, which con-

tains three major well fields whose combined yield accounts for about 80% of the municipality’s

groundwater supply. The most important environmental problem suffered by the municipality of

Bologna is groundwater contamination. In the last decades, industrial development has produced

many sources of pollutants. High concentrations of organhalogenatic compounds (mainly chlo-

rinated solvents) were first detected within the urban area of Bologna in the 1980s. While the

concentrations of trichloroethylene have been decreasing since the early 1980s, the concentrations

of perchloroethylene have been rapidly increasing (the behavior of these compounds is mainly re-

lated to their use in industrial processes requiring halogenatic solvents). Increased concentration

levels of nitrates were also detected in the groundwater in the eastern side of the city. Furthermore,

traceable concentrations of iron and manganese were detected in the main drinking well fields.

The geologic structure of the region’s subsurface has been the subject of numerous investigations
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(a) (b)

Figure 1: Locations of the municipality of Bolgna, the study area (the square region in the insert)

and data points within the study area and its vicinity (a). A conceptual representation of the main

geological units in the vertical cross-section of the study area (b). Our focus is on the analysis of

the composition of an aquitard Alpha that separates two aquifers in the Bologna aquifer system.
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(e.g., Ricci Lucchi, 1984; Ricci Lucchi et al., 1982; Francavilla et al., 1980; Amorosi and Farina,

1994a, 1994b, 1995). These and other studies reveal that the Reno river alluvial fan in the area

has a wedge shape, whose thickness increases from South to North (Figure 1b). The alluvial fan

rests on sea clayey deposits, which are rich with saline water. The water-bearing alluvial deposits

in the Bologna area are more than 300m thick (Francavilla et al., 1980) and can be subdivided

into three large-scale geological units (also known as depositional cycles) denoted by A, B, and C

in Figure 1b. These depositional cycles, each about 100 − 150m thick, are separated by the clayey

deposits denoted Delta and Epsilon, which form flow barriers and are commonly referred to as

aquitards. The stratigraphic structure (spatial extent) of the major depositional units A, B, and

C was investigated with a series of well logs (Regione Emilia Romagna, 1998). The same well log

analysis revealed that the depositional cycle A can be further subdivided into two major subunits

(denoted by A1 and A234 in Figure 1b), which are separated the aquitard called Alpha.

The alluvial deposits A234 and B form large and productive aquifer systems, which are heavily

used by the municipality of Bologna as a major source of fresh water. Groundwater from the upper

aquifer A1 shows signs of local contamination. Aquitard Alpha plays a major role as the natural

barrier between the upper contaminated aquifer system A1 and the deeper aquifer systems A234

and B. Reliable identification of the spatial distribution of geologic facies (geomaterials) within this

aquitard is crucial for identifying potential preferential paths for contaminant migration between

the aquifers A1 and A234. It is also an essential component of the conceptual and mathematical

models of subsurface water circulation in the region. Such an identification is hampered by the

scarcity of available data. Probabilistic reconstruction of hydrofacies distribution within aquitard

Alpha is the main objective of this study.

2 Sedimentological Data

A total of 39 logs of geognostical boreholes and 183 well logs were used to characterize the subsurface

structure of the Reno river alluvial fan within the municipality of Bologna. Their locations are

shown by the dots in Figure 1a. Of these, 123 well logs fall within the area under investigation —

the region identified by the dashed-line square in the insert of Figure 1a — and are used in this

analysis. From each of these well logs, two attributes of aquitard Alpha were extracted: its local

thickness and the volumetric fraction (percentage) of the embedded coarse materials. These are

reported as the cumulative thickness of fine materials (silt and clay) and the percentage occupied

by coarse materials (sand and gravel), respectively. Figure 2 depicts spatial locations of the well
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Figure 2: Spatial distribution of well core samples corresponding to aquitard Alpha. Left: the

proportion of coarse material (sand and gravel) in the well core of aquitard Alpha. Right: the

thickness of fine material (silt and clay) in the well core of aquitard Alpha.

core data over the study region.

The core data reveal that the thickness of aquitard Alpha varies from 1− 3m in the areas near

the peak of the Reno river alluvial fan (the southern region of the study area in Figure 1a) to

8−12m near the main municipal well-fields (the southwestern part of the study area in Figure 1a),

to 30 − 45m in the Northern areas.

The data show that aquitard Alpha is composed mainly of fine (silty-clayey) material with

local interbedding of coarse (sand and gravel) material. The dominance of the fine material defines

the ability of aquitard Alpha to act as a natural barrier, which prevents flow and migration of

contaminants between the upper aquifer and the deep groundwater reservoirs. The inclusions of

coarse material are highly permeable and can effectively act as locations of preferential flow paths

in the otherwise impermeable aquitard.

Aquitard Alpha is most likely to pose environmental problems (i.e., to display contaminant

pathways) at locations where its relatively small thickness contains relatively large fractions of the

coarse geomaterial. From each of the n = 123 well core samples the bivariate measurement

y(si) =





yT (si)

yP (si)



 =





thickness of fine material at si

% of coarse material at si



 , i = 1, . . . , n (1)
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Figure 3: Proportion of coarse material (sand and gravel) vs. the thickness of impermeable material

(silt and clay) in the well core samples of aquitard Alpha.

was recorded. The data are shown spatially in Figure 2 and as a scatterplot in Figure 3. The mea-

surments showing aquitard Alpha to be locally thin as well as having a high proportion of coarse

material suggest possible discontinuities within the impervious matrix of the aquitard. Hence sites

for which the plotting symbols are dark for both plots of Figure 2 point to possible preferential flow

paths between the upper and deep aquifers. Likewise, these same environmentally critical locations

correspond to points in the lower right corner of Figure 3. In the next section we utilize these

data, along with a binary spatial process model for the presence of preferential contaminant path-

ways through aquitard Alpha, to infer locations of possible discontinuities in the low conductivity

structure of aquitard Alpha.

3 Statistical modeling

The statistical modeling for this application requires us to specify a spatial prior model for aquitard

Alpha as well as a likelihood which determines how the observed data informs about the aquitard.

Both of these model components are described in this section.
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3.1 Spatial prior model for aquitard Alpha

Over the study region S we focus on two features of aquitard Alpha: the total thickness of the fine

materials; and the presence or absence of contaminant pathways through the aquitard. We specify

a prior bivariate spatial process (zT (s), zP (s)), s ∈ S, for aquitard Alpha. The first component,

zT (s), which we call clay thickness, denotes the total thickness of impermeable material (clay and

silt) within Alpha at spatial location s. The clay thickness process zT (s) is a positive, continuous

field over the spatial region S. The binary process zP (s) we call connectivity. It denotes the presence

(zP (s) = 1) or absence (zP (s) = 0) of preferential contaminant pathways through aquitard Alpha at

spatial location s. Both of these fields are non-Gaussian, but are constructed using latent Gaussian

process models.

The clay thickness is derived by taking the positive part of a standard Gaussian process uT (s)

so that

zT (s) =







uT (s) if uT (s) ≥ 0

0 if uT (s) < 0.

The underlying Gaussian process uT (s) has a mean function α0 + α1s2 that depends linearly on

the north-south spatial coordinate s2. The random part of uT (s) is constructed using a discrete

representation given in Higdon (2002) which we define as follows. Let S be the spatial region

defined by the study region in this application and let xT
1 , . . . , xT

K be iid N(0, λ−1
T ) random variables

(“knots”) associated with sites w1, . . . , wK ∈ S. The knot locations are taken to be an equally

spaced 25 × 25 array over the study region S. The spatial process uT (s) for s = (s1, s2) ∈ S is

constructed using the representation

uT (s) = α0 + α1s2 +

K
∑

j=1

xT
j k(s − wj ; σT ),

where we take k(·; σT ) to be a circular, bivariate normal density with standard deviation σT . The

precision parameter λT controls the precision of the xT
j ’s, which in turn controls the marginal

variance of the uT (s) process. A Γ(aT = 1, bT = .001) prior is specified for λT . The parameters

controlling the mean function, (α0, α1) are given independent U(0, 40) priors. Finally, the kernel

width parameter σT controls the range of spatial dependence for the uT (s) process. We specify a

U(.04, 1) for σT after rescaling S to the unit square [0, 1]× [0, 1]. The lower bound of 0.04 is equal

to the minimum spacings in the underlying knot locations. Allowing σT to take values lower than

this will result in “dead” regions in uT (s) that move towards its mean value of α0 +α1s2. If smaller

values of σT are required, then a finer grid of knot locations will be needed. For the application
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here, the 25× 25 grid is sufficient. Note that increasing the knot density has very little effect since

λT can be correspondingly increased, leaving the induced distribution for the latent process uT (s)

essentially unchanged.

This discrete representation allows the thickness field to be controlled by mean function param-

eters α0, α1, and the K knot values xT . This is particularly useful for the MCMC approach used

to explore the rather complicated posterior distribution resulting from this application (see (5)).

Conditional on the clay thickness field zT (s), the binary connectivity field zP (s) is constructed

in a similar fashion using a latent 0 mean Gaussian process uP (s) according to the rule

zP (s) =







1 if β0 + β1zT (s) + uP (s) ≥ 0

0 if β0 + β1zT (s) + uP (s) < 0.
(2)

Conditionally on zT (s), this is an example of a clipped Gaussian random field model from deO-

liveira (2000), where the mean function depends on clay thickness zT (s). It also can be considered a

spatial generalization of the latent probit model (Agresti, 1990; Johnson and Albert, 1999). Uncon-

ditionally, this formulation results in a bivariate, non-Gaussian spatial model. The process uP (s)

is defined in a manner analogous to that of uT (s):

uP (s) =
K

∑

j=1

xP
j k(s − wj ; σP ),

where the knot locations are the same as those for uT (s). Here the underlying knot values

xP
1 , . . . , xP

K are given independent N(0, λ−1
P ) distributions a priori. The precision parameter λP

is fixed so that the resulting Gaussian process uP (s) has a nearly constant marginal variance of

1. This variance is not exactly constant over S due to the discrete representation. However, the

fluctuations over S are small enough to be negligible. Also, the kernel k(·, σP ) is controlled by its

own scaling parameter σP . As with its clay thickness counterpart, σP is assigned a U(.04, 1) prior.

In equation (2), β0 controls the mean connectivity probability; β1 controls the dependence

between the clay thickness and connectivity fields. We expect that β1 will be negative, so that

greater clay thickness at spatial location s makes it less likely that there is a preferential pathway

through aquitard Alpha (i.e., zP (s) = 1). However, we specify wide U(−15, 15) priors for both β0

and β1 to allow the well core data to inform about these parameters.

To visualize how this model works, Figure 4 shows the grids used to create the two processes,

uP (s) and uT (s), along with realizations for these two processes. The final column of this figure

shows the induced realization for the two dependent fields, zT (s) and zP (s). Note that the realiza-

tion of zT (s) has been truncated to be strictly positive, and the realization from zP (s) is binary,

8



Figure 4: Construction of the bivariate spatial model. Independent normal variates are located at

the grid locations shown in the left hand column of plots. These “knot” values are convolved by a

normal kernel whose standard deviation is given by the circles in the plots of the first column. The

induced fields uT (s) and uP (s) are shown in the middle columns. The right hand columns show the

two spatial fields zT (s) and the binary connectivity field zP (s). The red portion of the top right

image shows where zT (s) = 0.

constructed from zT (s) and uP (s). For this realization, values for the parameters xT , xP , σT , σP ,

β0, and β1 were taken from a posterior realization used in the eventual analysis of aquitard Alpha.

3.2 Incorporating well core data

The data inform about the underlying processes through the likelihood. For this application,

the likelihood factors into two terms: one involving the clay thickness, and one involving the

connectivity field. The first term is a standard likelihood for a spatial model where the observed

clay depth yi1 is a noisy version of the true depth. The observed clay depth is not expected to

be exact since the well core data typically carries a fair bit of uncertainty. In addition, we expect

this noise term to absorb some of the small scale variability in the actual clay depth. Taking yT =
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(yT (s1), . . . , yT (sn))T to be the n-vector of clay depth observations and zT = (zT (s1), . . . , zT (sn))

to be the clay depth process at the observation sites, this component of the likelihood becomes

LT (yT |zT , λy) ∝ λ
n
2

y exp

{

−
λy

2
(yT − zT )T (yT − zT )

}

where the parameter λy controls the observation precision.

The second component of the likelihood determines how the observed data inform about the

binary connectivity process zP (s). Here it is standard to specify a sampling model for which

observations y(si), i = 1, . . . , n, are independent given the underlying spatial field so that

LP (y(s)|zP (s)) =
n

∏

i=1

LP (y(si)|zP (si)). (3)

Similar binary classification applications from spatial and image applications typically specify a

normal sampling model where the mean of y(s) depends on the state of zP (s) (Besag et al., 1991;

Hurn, 1998). However the nature of the bivariate measurements taken here, along with their spread

– evident in Figure 3 – are incompatible with a normal sampling model for the y(si)’s.

If we assume the product form of the sampling model in (3), the fact that each zP (si) is binary

means that the likelihood depends only on the ratios

LP (y(si)|zP (si) = 1)/LP (y(si)|zP (si) = 0) = r(y(si)), i = 1, . . . , n

since (3) can be rewritten as

LP (y(s)|z(s)) =

n
∏

i=1

r(y(si))
zP (si) LP (y(si)|zP (si) = 0) ∝

n
∏

i=1

r(y(si))
zP (si). (4)

Hence the data only inform about zP (s) through the specification of the odds map r(y(s)).

It remains to specify r(y) as a function of possible bivariate outcomes y(s) ∈ {[0,∞)× [0, 1]}. In

fact, we need only consider thicknesses between 0 and 50 meters since it is unlikely aquitard Alpha

is thicker than 50 meters within the study region. In specifying the odds map, it is convenient to

interpret r(y(s)) as the odds that the underlying zP (s) = 1 at the spatial location s, independent

of spatial information encoded into the prior for zP (s).

We rely on expert knowledge from hydro-geologists familiar with the study region to determine

the odds map r(y(s)). We model log r(y(s)) as a linear function of the observed clay thickness

yT (s) and the observed proportion of coarse material in Alpha yP (s). The expert knowledge is

used to specify a line for which the odds are equal to 1, and a slope which determines how quickly

the odds change as the data move away from the r(y(s)) = 1 line. The best determination of this
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function is given in the central frame of Figure 5. Considerations for determining this map include

the following points.� For the very small local thickness of aquitard Alpha (< 10m), even a very large fraction of

fine material does not guarantee the spatial continuity of the aquitard.� An intermediate thickness guarantees the continuity only for a relatively small fraction of

coarse material. This is because coarse materials within a clearly identifiable aquitard man-

ifest themselves as a sequence of interbedding structures, so that a porous pathway through

the aquitard is possible.� A very large fraction of coarse materials tends to be indicative of local discontinuities, unless

the thickness of an aquitard is very large (> 20m).

In order to investigate sensitivity to this choice of odds map, 8 additional specifications are also

given in the Figure 5 based on the expert knowledge. Each allows a perturbation of the r(y(s)) = 1

line and the slope.

3.3 Posterior distribution

After specifying common, independent gamma priors for the precisions and common uniform priors

for the kernel width parameters σT and σP , the resulting posterior distribution has the form

π(λy, xT , λT , σT , xP , σP , β0, β1|y) ∝ (5)

λ
n
2

y exp

{

−
λy

2
(yT − zT )T (yT − zT )

}

×
n

∏

i=1

r(y(si))
zP (si)

×λ
ay−1
y exp{−byλy} × λ

K
2

T exp{− 1

2
λT ||xT ||

2} × λaT−1
T exp{−bT λT }

×λ
K
2

P exp{− 1

2
λP ||xP ||

2} × λaP−1
P exp{−bP λP }

×I[.04 ≤ σT , σP ≤ 1] × I[−15 ≤ β0, β1 ≤ 15]

This distribution is sampled using Markov chain Monte Carlo with random walk Metropolis updates

for the knot parameters xT and xP . Such updates are also used for the kernel parameters σT and

σP , as well as β0 and β1. Because the full conditionals for the precision parameters λy and λT are

gamma, these parameters can be updated using Gibbs updates.
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Figure 5: Odds maps based on expert judgement. The central figure corresponds to the best

estimate; the remaining figures show other plausible odds maps. The solid line corresponds to data

for which the odds of connectivity is 1. The dotted line corresponds to an odds of 10. For each

odds map, the posterior proportion of the study region that is permeable is given. Above that are

the posterior mean estimates for (β0, β1).

12



4 Results

Figure 6 shows the posterior mean for the clay thickness of aquitard Alpha. In general it is thinner

near the south edge of the study region. Inference regarding the clay thickness field zT (s) is almost

completely insensitive to the choice of odds map since nearly all of the information regarding this

field is contained in the thickness component of the likelihood LT (yT (s)|zT (s), λy).

The posterior mean for the binary connectivity field is given in Figure 7. Here the estimates

vary considerably depending on which odds map is used. Also, given in Figure 5 are the posterior

mean estimates for β0 and β1 as well as the total proportion of the study site where possible

interconnections between upper and deep aquifers are revealed under each of the 9 different analyses.

The reconstructions of connected regions show an increased probability of discontinuity for the

aquitard in the southern region of the study region. The magnitude of this probability varies

depending on the odds map specified. Also, some of the analyses show potential for discontinuity

in Alpha in the middle of the left hand side of the region. In Figure 7, the dark red regions denote

probabilities greater than .9; the bright red regions denote probabilities greater than .95.

As expected, the posterior connectivity reconstruction depends a great deal on the assumed

odds map which specifies how the data inform about the connectivity features of aquitard Alpha.

Note that the reconstructions corresponding to the odds maps in the right hand column of Figure

5 show almost no risk of connectivity. This is because the there are fewer data locations that give

a high odds of connectivity. In addition, these odds maps lead to very little spatial continuity

(see the data points in Figure 7), leading to spatially homogeneous reconstructions with a small

posterior probability of connectivity. In essence, these rather extreme odds maps result in a constant

posterior connectivity map which isn’t consistent with the expert knowledge. Similarly, the overly

strong odds maps given in Figures 5(g) and 5(h) lead to reconstructions that allow what is thought

to be too large a region occupied by coarse geomaterials in aquitard Alpha.

The preferred odds map given in Figure 5(e) identifies potential connectivity in the southern

part of the study region. The odds map corresponding to Figure 5(d) gives similar results. Both of

these analyses point to a potential region of direct connection between the upper and deep aquifers

in the central-western part of the study area.

The posterior distribution favors a rather short spatial correlation distance for the clay thickness

field zT (s), and a large correlation distance for the process uP (s) used to build the connectivity

field zP (s). A posterior realization of these fields are given in Figure 4. Residuals for the model fit

are shown in Figure 8. For clay thickness, the residuals are simply yT (si) − ẑT (si), i = 1, . . . , n,

13



Figure 6: Posterior mean estimate for the clay thickness field zT (s). This estimate is not sensitive

to the choice of odds map used from Figure 5.
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Figure 7: Pointwise posterior probability of connectivity for aquitard Alpha. The 9 posterior

maps correspond to the posterior expectation of zP (s) using the corresponding odds maps given in

Figure 5.
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Figure 8: Residuals from the posterior mean for zT (si) and zP (si). For clay thickness, the residuals

are simply yT (si)− ẑT (si), i = 1, . . . , n. For connectivity the residual is defined to be the difference

between the inferred probability from the local well core that the aquitard is permeable at si,

p(si) = r(si)/(1 + r(si)), and the posterior probability that zP (si) = 1.

where ẑT (si) denotes the posterior mean of the thickness field at si. For connectivity, the residual

is defined to be the difference between the inferred probability from the local well core that the

aquitard is permeable at si, p(si) = r(si)/(1+ r(si)), and the posterior probability that zP (si) = 1.

The posterior mean for these two fields appears to match the data well.

We used normal kernels in the convolution represention of both latent fields, uT (s) and uP (s), for

computational reasons. The nonstandard model formulations of Section 3.1, as well as the need for

predictions over a fine grid of spatial locations, require that zT (s) and zP (s) can be quickly produced

given the model parameters. The convolution construction of the latent processes answers both

of these needs. The resulting processes uT (s) and uP (s) are, to a close approximation, stationary

zero mean Gaussian processes with a Gaussian covariogram. Such processes give very smooth

realizations for uT (s) and uP (s) (Paciorek and Schervish, 2004). If one were to prefer rougher

realizations for the processes, this would require a very dense set of knot locations, making the

computations infeasibe for this application given our current computing capabilities.

Given the high level of noise in the well-core data, and the fact that the connectivity field is not

directly observed, we do not expect the data to inform about the smoothness of zP (s). Simulation

studies have also lead us to conclude that the data do not inform about the covariance model

for zT (s). However we can check the sensitivity of the clay thickness reconstruction to the choice
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Figure 9: Posterior mean estimate of the connectivity field along with the spatial locations of the

piezometers. The left hand figure is based only on the well core data; the right hand figure also

incorporates information from the piezometers which suggest no connectivity at the two spatial

locations.

of covariance model by fitting the thickness data using alternative covariance specifications. In

these sensitivity investigations, no attempt was made to enforce positivity of zT (s). The resulting

estimates were very similar to the one shown in Figure 6. Hence, we’re satisfied that our model

specification is sufficient for this application.

4.1 Comparing the reconstruction to other information sources

This analysis is complicated by the fact that the sedimentological data do not give direct information

on whether or not aquitard Alpha is permeable at any particular spatial region. In this section

we compare the estimated connectivity field with information from piezometer readings from other

municipal data sources. In addition, we also see how results obtained in the previous section

compare with qualitative reconstructions which utilize sedimentological information along with the

123 well cores used for the statistical analysis.
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4.1.1 Comparison to piezometer readings

Since discontinuities in aquitard Alpha connect the upper and lower aquifers, water pressure (hy-

draulic head) in both aquifers is at equilibrium if there is a local discontinuity. This can be

ascertained by piezometers which are capable of measuring hydraulic head in the upper and lower

aquifers at (approximately) the same locations. Even though the regional network of Bologna com-

prises a large number of piezometers (Regione Emilia Romagna, 1998), only two pairs of piezometers

satisfy this requirement. Their locations are denoted by the symbols 1 and 2 in Figure 9. We ana-

lyzed the average difference between hydraulic heads in the upper and lower aquifers △h at these

two locations over the period of 1999 – 2000. The first pair of piezometers (symbol 1, designated by

4030P and 4028P in the data base of the municiplaity of Bologna) gives △h = 27.53m. The second

pair (symbol 2, designated by 5261Pa and 5261Pb in the data base of the municiplaity of Bologna)

gives △h = 35.37m. Such large differences in hydraulic heads, combined with the remaining piezo-

metric readings, strongly support the continuity of aquitard Alpha at these two locations. This is

consistent with the central reconstruction of Figure 7 (as well as the others) which gives a posterior

probability of .08 and .41 at those two locations. These data can also be incorporated into the data

analysis by enforcing the condition zP (s) = 0 at these two locations. The resulting connectivity

estimate–computed via importance sampling using the original MCMC sample–is given in the right

hand frame of Figure 9.

4.1.2 Comparison to qualitative geological cross-sections

The geological data set consists of the complete 123 well logs (stratigraphic columns), from which

the sedimentological data described in Section 2 have been extracted. By supplementing this with

the knowledge of the dynamics of depositional processes over the geological time scale, qualitative,

expert-based reconstructions of geological cross-sections are produced. Six of these are shown in

Figure 10. In these cross-sections, the dark color indicates the fine material inclusions into the

coarse material depositional structures. The central figure shows the posterior mean connectivity

field, along with the spatial locations of these cross-sections.

Cross-sections S1–S4 located in the southern part of the study area show little or no fine

materials at the depths where aquitard Alpha should be. In constrast, the northern cross-sections

S5 and S6 show very noticable dark regions in the shallow depths where aquitard Alpha is located.

Cross-section S1 identifies the presence of the fine materials at depths between 25 and 54m, which

are significantly lower than the position of aquitard Alpha. Cross-section S2 shows highly localized
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Figure 10: Qualitative geological sections. The posterior mean estimate of the connectivity field

(center) along with qualitatively estimated cross-sections of the geology. These qualitative cross-

sections were constructed using the 123 well cores described in Section 2 along with consideration

of the dynamics of depositional processes over the geological time scale. Dark regions in the cross-

sections denote fine-scale (low-conductivity) inclusions. In the central connectivity map, darker

regions denote areas were aquitard Alpha is likely to be more permeable.
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inclusions of fine materials, whose thickness is generally less than 1m, into 90m of the ambient

coarse material. Similarly, cross-section S3 reveals the small thickness and discontinuous nature of

the fine material deposits within aquitard Alpha, mainly located at depths between 23 and 25.6m.

The thickness of the fine material deposits diminishes towards West. Near the Reno river (the

western edge of cross-section S3), fine materials are not detectable at depths typical of aquitard

Alpha. In cross-section S4, the fine material deposits belonging to aquitard Alpha are discerned

at depths between 23 and 30.6m. These clayey sediments tend to deepen when moving toward the

NE edge, while at the same time, their thickness lessens, reaching about 10cm at the well log on

the NE edge of the cross-section.

5 Discussion

This analysis has identified locations in the study region for which there is cause for concern

regarding the ability of aquitard Alpha to protect the deep aquifers system from contaminants.

Although the quantitative results of this analysis depend on the subjective odds map, the qualitative

nature of the estimated permeable inclusions is fairly stable for 6 of the 9 odds maps. The southern

region, along with some isolated regions of the study area show potential for connectivity between

the upper and lower aquifers. The use of a more overtly subjective likelihood has proven useful in

other scientific investigations as well; see Rappold et al.(2006), for example.

This study lead us to a new, non-Gaussian, bivariate spatial model that links a continuous,

non-negative field with a binary field. Our original analysis considered only a clipped Gaussian

field model for the binary connectivity field. However, this initial analysis proved unsatisfactory;

it assigned appreciable chance of connectivity to locations in the northern region of the study area

for which the clay depth is over 40m. It was clear that a model that directly included dependence

on the clay depth of aquitard Alpha was needed.
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